Probing basal ganglia functions by saccade eye movements.

نویسندگان

  • Masayuki Watanabe
  • Douglas P Munoz
چکیده

The basal ganglia (BG) are a group of subcortical structures involved in diverse functions, such as motor, cognition and emotion. However, the BG do not control these functions directly, but rather modulate functional processes occurring in structures outside the BG. The BG form multiple functional loops, each of which controls different functions with similar architectures. Accordingly, to understand the modulatory role of the BG, it is strategic to uncover the mechanisms of signal processing within specific functional loops that control simple neural circuits outside the BG, and then extend the knowledge to other BG loops. The saccade control system is one of the best-understood neural circuits in the brain. Furthermore, sophisticated saccade paradigms have been used extensively in clinical research in patients with BG disorders as well as in basic research in behaving monkeys. In this review, we describe recent advances of BG research from the viewpoint of saccade control. Specifically, we account for experimental results from neuroimaging and clinical studies in humans based on the updated knowledge of BG functions derived from neurophysiological experiments in behaving monkeys by taking advantage of homologies in saccade behavior. It has become clear that the traditional BG network model for saccade control is too limited to account for recent evidence emerging from the roles of subcortical nuclei not incorporated in the model. Here, we extend the traditional model and propose a new hypothetical framework to facilitate clinical and basic BG research and dialogue in the future.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

How Laminar Frontal Cortex and Basal Ganglia Circuits Interact to Control Planned and Reactive Saccades Abbreviated Title: Frontal Cortex and Basal Ganglia Saccade Control

Acknowledgements J. Abstract How does the brain learn to balance between reactive and planned behaviors? The basal ganglia and frontal cortex together allow animals to learn planned behaviors that acquire rewards when prepotent reactive behaviors are insufficient. This paper proposes a new model, called TELOS, to explain how laminar circuitry of the frontal cortex, exemplified by the frontal ey...

متن کامل

Abnormal eye movements in three types of chorea.

Chorea is an abnormal movement characterized by a continuous flow of random muscle contractions. This phenomenon has several causes, such as infectious and degenerative processes. Chorea results from basal ganglia dysfunction. As the control of the eye movements is related to the basal ganglia, it is expected, therefore, that is altered in diseases related to chorea. Sydenham's chorea, Huntingt...

متن کامل

Physiology and Clinical Studies of Eye Movements

Recording of saccadic eye movements has proved to be a valuable tool for investigation of brain function and dysfunction. Recent neurophysiological studies have revealed that the time from target appearance to saccade initiation can be modeled as an accumulator function in which both baseline and rate of rise of saccade-related activity contribute toward achieving threshold for movement initiat...

متن کامل

A neural model of sequential movement planning and control of eye movements: Item-Order-Rank working memory and saccade selection by the supplementary eye fields

How does working memory store multiple spatial positions to control sequences of eye movements, particularly when the same items repeat at multiple list positions, or ranks, during the sequence? An Item-Order-Rank model of working memory shows how rank-selective representations enable storage and recall of items that repeat at arbitrary list positions. Rank-related activity has been observed in...

متن کامل

Control of volitional and reflexive saccades in Tourette's syndrome.

Tourette's syndrome is characterized by involuntary tics and, although the underlying pathogenesis and pathophysiology of Tourette's syndrome remains unclear, it is suspected that basal ganglia structures are involved. The basal ganglia also play an important role in the control of saccadic eye movements and we therefore hypothesize that Tourette's syndrome patients have abnormal control of sac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The European journal of neuroscience

دوره 33 11  شماره 

صفحات  -

تاریخ انتشار 2011